In a nutshell: The Hooke-Jeeves method

Given a continuous real-valued function f of a vector variable with one initial approximation of a minimum \mathbf{u}_{0}, the Hooke-Jeeves method steps towards a minimum by using the canonical unit vectors without relying on the ability to differentiate the function.

We will assume the dimension of the vector variable is n and the canonical vectors are $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$.

Parameters:

$\varepsilon_{\text {step }} \quad$ The maximum error in the value of the minimum cannot exceed this value.
$\varepsilon_{\text {abs }} \quad$ The difference in the value of the function after successive steps cannot exceed this value.
$h \quad$ An initial step size.
$N \quad$ The maximum number of iterations.

1. Let $k \leftarrow 0$.
2. If $k>N$, we have iterated N times, so stop and return signalling a failure to converge.
3. Let $\Delta \mathbf{u}_{k} \leftarrow \mathbf{0}$ and letting j take the values from 1 to n do the following:
a. If $f\left(\mathbf{u}_{k}+\Delta \mathbf{u}_{k}+h \mathbf{e}_{j}\right)<f\left(\mathbf{u}_{k}+\Delta \mathbf{u}_{k}\right), f\left(\mathbf{u}_{k}+\Delta \mathbf{u}_{k}-h \mathbf{e}_{j}\right)$, set $\Delta \mathbf{u}_{k} \leftarrow \Delta \mathbf{u}_{k}+h \mathbf{e}_{j}$,
b. otherwise, if $f\left(\mathbf{u}_{k}+\Delta \mathbf{u}_{k}-h \mathbf{e}_{j}\right)<f\left(\mathbf{u}_{k}+\Delta \mathbf{u}_{k}\right)$, set $\Delta \mathbf{u}_{k} \leftarrow \Delta \mathbf{u}_{k}-h \mathbf{e}_{j}$,
4. If $\Delta \mathbf{u}_{k}=\mathbf{0}$, we are done for this step, increment k and divide h by 2: $h \leftarrow h \div 2$, and return to Step 2 .
5. Let $\mathbf{u}_{k+1} \leftarrow \mathbf{u}_{k}+\Delta \mathbf{u}_{k}$,
a. If $f\left(\mathbf{u}_{k+1}+\Delta \mathbf{u}_{k}\right)<f\left(\mathbf{u}_{k+1}\right)$, set $\mathbf{u}_{k+1} \leftarrow \mathbf{u}_{k+1}+\Delta \mathbf{u}_{k}$ and return to this Step 5a.
6. If $\left\|\mathbf{u}_{k+1}-\mathbf{u}_{k}\right\|_{2}<\varepsilon_{\text {step }}$ and $\left|f\left(\mathbf{u}_{k+1}\right)-f\left(\mathbf{u}_{k}\right)\right|<\varepsilon_{\text {abs }}$, return \mathbf{x}_{k+1}.
7. Return to Step 2.

Acknowledgement: Jakob Koblinsky noted I was referring to $\Delta \mathbf{x}_{k}$ and not $\Delta \mathbf{u}_{k}$ in Step 5. This has been corrected.

